Ollama Adapter
The Ollama adapter connects to a local or remote Ollama instance. It uses the ollama npm package's /browser sub-export — this strips Node-only node:fs code that would cause bundler errors in Vite, Next.js, or any browser-targeted build.
Installation
npm install tekimax-tsUsage
import { Tekimax, OllamaProvider } from 'tekimax-ts';
const client = new Tekimax({
provider: new OllamaProvider({
// Defaults to 127.0.0.1 (not "localhost") to avoid IPv6 DNS
// resolution issues on macOS and some Linux distros.
host: 'http://127.0.0.1:11434',
})
});
const result = await client.text.chat.completions.create({
// Model must be pulled first: `ollama pull llama3`
model: 'llama3',
messages: [{ role: 'user', content: 'Why is the sky blue?' }]
});
console.log(result.message.content);Authentication & Cloud Support
You can connect to a remote Ollama instance (e.g., behind a reverse proxy or Ollama Cloud) by providing an apiKey. The adapter injects an Authorization: Bearer <key> header via a custom fetch wrapper — the Ollama JS SDK doesn't natively support auth tokens.
const client = new Tekimax({
provider: new OllamaProvider({
host: 'https://your-ollama-instance.com',
apiKey: 'ollama_key_...'
})
});Streaming
Local models support streaming out of the box with the standard interface.
const stream = client.text.chat.completions.createStream({
model: 'mistral',
messages: [{ role: 'user', content: 'Count to 10 efficiently.' }]
});
for await (const chunk of stream) {
process.stdout.write(chunk.delta);
}Reasoning (Thinking)
Ollama has native support for the thinking field on compatible models. Set think: true to capture the reasoning trace.
const result = await client.text.chat.completions.create({
model: 'deepseek-r1',
messages: [{ role: 'user', content: 'Solve: if 2x + 3 = 11, what is x?' }],
think: true // Ollama passes this directly to the model
});
console.log(result.message.thinking); // "2x + 3 = 11, 2x = 8, x = 4"
console.log(result.message.content); // "x = 4"Vision (Multi-Modal)
Ollama supports vision with models like llava. Pass images as base64 data URIs in the message content.
const result = await client.text.chat.completions.create({
model: 'llava',
messages: [{
role: 'user',
content: [
{ type: 'text', text: 'What is in this image?' },
{ type: 'image_url', image_url: { url: '...' } }
]
}]
});
console.log(result.message.content);Tool Calling
Tool calling is supported on compatible Ollama models (e.g., llama3, mistral).
const result = await client.text.chat.completions.create({
model: 'llama3',
messages: [{ role: 'user', content: 'What is the weather in Berlin?' }],
tools: [{
type: 'function',
function: {
name: 'get_weather',
description: 'Get current weather',
parameters: { type: 'object', properties: { location: { type: 'string' } } }
}
}]
});
// Ollama doesn't provide unique tool call IDs, so the adapter generates them.
console.log(result.message.toolCalls);Notes
- Why
ollama/browser? The defaultollamaimport pulls innode:fsfor file-based model management. This breaks client-side bundlers (Vite, webpack, Next.js). The/browsersub-export strips that code while keeping the chat API intact. - Why
127.0.0.1? Using the IP literal instead oflocalhostavoids DNS resolution delays and failures on systems wherelocalhostresolves to::1(IPv6) but Ollama only binds to0.0.0.0(IPv4). - Model Availability: Models must be pulled locally before use (
ollama pull <model>). The SDK does not auto-pull models.
