Tekimax LogoSDK
Adapters

Ollama Adapter

The Ollama adapter connects to a local or remote Ollama instance. It uses the ollama npm package's /browser sub-export — this strips Node-only node:fs code that would cause bundler errors in Vite, Next.js, or any browser-targeted build.

Installation

Code
npm install tekimax-ts

Usage

Code
import { Tekimax, OllamaProvider } from 'tekimax-ts'; const client = new Tekimax({ provider: new OllamaProvider({ // Defaults to 127.0.0.1 (not "localhost") to avoid IPv6 DNS // resolution issues on macOS and some Linux distros. host: 'http://127.0.0.1:11434', }) }); const result = await client.text.chat.completions.create({ // Model must be pulled first: `ollama pull llama3` model: 'llama3', messages: [{ role: 'user', content: 'Why is the sky blue?' }] }); console.log(result.message.content);

Authentication & Cloud Support

You can connect to a remote Ollama instance (e.g., behind a reverse proxy or Ollama Cloud) by providing an apiKey. The adapter injects an Authorization: Bearer <key> header via a custom fetch wrapper — the Ollama JS SDK doesn't natively support auth tokens.

Code
const client = new Tekimax({ provider: new OllamaProvider({ host: 'https://your-ollama-instance.com', apiKey: 'ollama_key_...' }) });

Streaming

Local models support streaming out of the box with the standard interface.

Code
const stream = client.text.chat.completions.createStream({ model: 'mistral', messages: [{ role: 'user', content: 'Count to 10 efficiently.' }] }); for await (const chunk of stream) { process.stdout.write(chunk.delta); }

Reasoning (Thinking)

Ollama has native support for the thinking field on compatible models. Set think: true to capture the reasoning trace.

Code
const result = await client.text.chat.completions.create({ model: 'deepseek-r1', messages: [{ role: 'user', content: 'Solve: if 2x + 3 = 11, what is x?' }], think: true // Ollama passes this directly to the model }); console.log(result.message.thinking); // "2x + 3 = 11, 2x = 8, x = 4" console.log(result.message.content); // "x = 4"

Vision (Multi-Modal)

Ollama supports vision with models like llava. Pass images as base64 data URIs in the message content.

Code
const result = await client.text.chat.completions.create({ model: 'llava', messages: [{ role: 'user', content: [ { type: 'text', text: 'What is in this image?' }, { type: 'image_url', image_url: { url: '...' } } ] }] }); console.log(result.message.content);

Tool Calling

Tool calling is supported on compatible Ollama models (e.g., llama3, mistral).

Code
const result = await client.text.chat.completions.create({ model: 'llama3', messages: [{ role: 'user', content: 'What is the weather in Berlin?' }], tools: [{ type: 'function', function: { name: 'get_weather', description: 'Get current weather', parameters: { type: 'object', properties: { location: { type: 'string' } } } } }] }); // Ollama doesn't provide unique tool call IDs, so the adapter generates them. console.log(result.message.toolCalls);

Notes

  • Why ollama/browser? The default ollama import pulls in node:fs for file-based model management. This breaks client-side bundlers (Vite, webpack, Next.js). The /browser sub-export strips that code while keeping the chat API intact.
  • Why 127.0.0.1? Using the IP literal instead of localhost avoids DNS resolution delays and failures on systems where localhost resolves to ::1 (IPv6) but Ollama only binds to 0.0.0.0 (IPv4).
  • Model Availability: Models must be pulled locally before use (ollama pull <model>). The SDK does not auto-pull models.

On this page